Extensions 1→N→G→Q→1 with N=C32×D9 and Q=C3

Direct product G=N×Q with N=C32×D9 and Q=C3
dρLabelID
D9×C33162D9xC3^3486,220

Semidirect products G=N:Q with N=C32×D9 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×D9)⋊1C3 = D9×He3φ: C3/C1C3 ⊆ Out C32×D9546(C3^2xD9):1C3486,99
(C32×D9)⋊2C3 = D9⋊He3φ: C3/C1C3 ⊆ Out C32×D9546(C3^2xD9):2C3486,106
(C32×D9)⋊3C3 = C32×C9⋊C6φ: C3/C1C3 ⊆ Out C32×D954(C3^2xD9):3C3486,224

Non-split extensions G=N.Q with N=C32×D9 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×D9).1C3 = D9×3- 1+2φ: C3/C1C3 ⊆ Out C32×D9546(C3^2xD9).1C3486,101
(C32×D9).2C3 = C3×C9⋊C18φ: C3/C1C3 ⊆ Out C32×D954(C3^2xD9).2C3486,96
(C32×D9).3C3 = D9⋊3- 1+2φ: C3/C1C3 ⊆ Out C32×D9546(C3^2xD9).3C3486,108
(C32×D9).4C3 = D9×C3×C9φ: trivial image54(C3^2xD9).4C3486,91

׿
×
𝔽